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RANDOM PROJECTIONS OF REGULAR POLYTOPES

KAROLY BOROCZKY, JR. AND MARTIN HENK

ABSTRACT. Based on an approach of Affentranger&Schneider we give
an asymptotic formula for the expected number of k-faces of the orthog-
onal projection of a regular n-crosspolytope onto a randomly chosen
isotopic subspace of fixed dimension, as n tends to infinity. In particu-
lar, we present a precise asymptotic formula for the (spherical) volume
of spherical regular simplices, which generalizes Daniel’s formula.

1. INTRODUCTION

Throughout the paper the n-dimensional Euclidean space equipped with
inner product {-,-) is denoted by R". For a polytope P C R" the set of
all k-faces is denoted by Fi(P) and its cardinality by fx(P), i.e., fx(P) =
#F,(P). The expected value of k-faces of an orthogonal projection of an
n-dimensional polytope P onto a randomly chosen d-dimensional linear sub-
space with isotropic distribution is denoted by E(fx(IlzP)), 1 <d<n—1,
0 <k <d-—1. It was proved by Affentranger&Schneider [AS92] that

(1.1) B(fy(yP))=2) " > Y. BFGNG,P),

520 FEFL(P) GEFg_1_2,(P)

or, equivalently,

(L2)  BE(fi(llaP) = fi(P) =2 >, BIRGONG,P),

$>0 FEFu(P) GEF4142:(P)

where B(F, G) and (G, F) denote the internal and external angle of G at
its face I, respectively (cf. [Grii67]). By definition the internal or external
angles are spherical volumes and therefore, in general, it is impossible to
give an explicit formula of them. However, it was shown by Ruben [Rub60]
(see also [Had79]) that for a regular n-simplex 7" C E™

i 00 ) z ) n—~k
’Y(Tk,Tn) — k j_‘__ 1 / 6_(k+1)1‘2 (\/LE/ C_yzdy> dr.

The research of the first author has been supported by the Magyary Zoltdn Fund, by
OTKA 14220, and by the Volkswagen Stiftung.
The work of the second author is supported by a “Leibniz Preis” of the German Science
Foundation (DFG) awarded to M. Grotschel.
1




2 KAROLY BOROCZKY, JR. AND MARTIN HENK

Using this representation Affentranger&Schneider established the asymp-
totic formula (cf. [AS92])

2¢ ( d _ -
(1.3)  B(fr([IgT™) ~ 7 (k N 1)ﬁ(T’“,Td Dixmn) D2 n 5 .
This formula still involves the “unknown” internal angles B(T*,T¢1).
For k = 0 an asymptotic formula of B(T°, T9!), d — oo, was given by
Daniel in the context of densest sphere packings (cf. [Rog64]). In Section 2

we generalize the approach of Daniel and prove (see Corollary 2.1)

d—k—2 d—3k—3
_ k+1)"=2 e 2 k2 +1
B(Tk7Td 1) = ( d—k ) . d—k—2 1+0 .
\/5 ﬁd_k_ldT d

Beside the regular simplex there are two more regular polytopes in arbitrary
dimensions, namely the n-cube W™ and the regular n-crosspolytope C™. Tt
is easy to see that for F' € F(W"), G € F(W") with F C G we have
y(F,W") = (1/2)" % and B(F,G) = B(F,W') = (1/2))~*. Furthermore,
fe(Wn) = ank (Z) and the number of [-faces containing a fixed k-face is

equal to (}~F). Thus we get by (1.1)

In Section 3 we complete the determination of E(fy(II4P)) for regular poly-
topes by proving for the regular n-crosspolytope C™

Theorem 1.1. For any given integers 0 <k <d <n—1,

d
BUTC™) ~ 22 (4 ) AT T )02

as n tends to infinity.

Observe that the asymptotic value of the expected number of k—faces is
the same for the cross polytope C™ as for T" in (1.3). At the moment, we
are not aware of any direct argument leading to this coincidence. We note
the following consequence of the proof of the estimates:

Corollary 1.1. For fited k €N, if d/k?* — oo and n/d — oo then
d+k k d—k—2 d—3k—3
2 2 —
B M) ~ E(f(i,om) ~ Y2 YT EE e 0 i
(k+1)ld =

We remark that by a result of Baryshnikov&Vitale, E(fr(II4T™)) coin-
cides with the expected number of k-faces of a standard Gaussian sample in
d-space (cf. [BV94]). They prove actually more: Let v',... ,v™ be vectors
in R” with the same positive length such that each (v*,v7), i # j, equals to
the same non-positive value. Then the orthogonal projection of a random
rotation of v!,... , o™ onto R?, up to an independent affine transformation
coincides in distribution with a standard Gaussian sample of m points in
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Re. Tf (v, 7) = 0 then the affine transformation can be chosen to be linear.
We deduce choosing m = n that

Remark. E(fi(I14C™)) coincides with the expected number of k-faces of a

standard Gaussian sample of n pairs ', —z"',..., 2", —z" of points in R%.

Finally, in Section 4 we give a list of some numerical computations of

E(fr(IlgC™)).

2. SPHERICAL VOLUMES OF REGULAR SIMPLICES

Let B", 8"~ C R" be denote the n-dimensional unit ball and n-dimensio-
nal unit sphere, respectively. For o € (0,1) a regular n-cone of angle « is

defined as the positive hull of n unit vectors a',... ,a" € §"~! satisfying

(@' al) =a, i#].
It is denoted by o(a,n) and 77! (a) = o(a,n) N S" ! is a regular spherical
(n — 1)-simplex of angle .

By definition, the internal angle 3(F, G) is the “fraction” of the linear hull
of G — z¥" taken up by the cone (positive hull) pos{G — z%'}, where 2% is a
relative interior point of the face F. Now, it is easy to check that for F' = T*
and G = T%1, k < d, the cone pos{G — z¥} can be written as a direct sum
of lin{F — 2} and a regular (d — k)-dimensional cone o(1/(k +2),d — k) of
angle 1/(k +2). Thus

yd—k-1 (Tg—k—1 (k_}r?))
Vﬂ_k_l(Sd—k—l) ?
Sd—k—l

(2.1) BT*, T =

where V.2=%~1(.) denotes the spherical volume w.r.t. , and the internal
angle B(T*, T%1) may be regarded as the normalized spherical volume of a
regular (d—k —1)-simplex of angle 1/(k +2). In the following we will study
the asymptotic behavior of the normalized volume of an arbitrary regular
spherical simplex. To this end, for n € N and o € (0,1) let

Ve (I (o)
V'*”—l(Sn—l)

The asymptotic behavior (n — oo) of 7(a, n) for the special case & = 1/2
has been investigated by Daniel (see [Rog64]). He proved

T(a,’l’L) =

en/2—1

RN

7(1/2,n) ~

Here we show the generalization

Lemma 2.1. Let 0 < a < 1. If n tends to infinity then

n—1 n+2
11—« e 2

T(a,n) = = ﬁn+1ﬁ;iﬁ”_1 (1 +0 (ai—n>) .
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Proof. Tt is well known that V*~1(§"') = na™?2/T'(n/2 + 1), where T()
denotes the I'-function. Hence (cf. [Had79])

(2.2)
/ e @) gy = T(oz,n)V*"_l(S"_l)/ ey = 7(c, n)ﬂ”/Q.
(am) 0

Now let a',...,a" € 8”71 such that o(a,n) = pos{al,...,a"} and let A be
the n x n-matrix with columns a*. Calculating the volume of the simplex
conv{0,a',... ,a"} yields that detA = /1 —a + any/1 — o Applying
the linear transformation z = Ay to the integral on the left hand side of
(2.2) gives

1— Y1 — )T
T(a,n) = vii-a + on) 2) / / —(AvAY) qu. L dyy,.

As (Ay,Ay) =37 1 y? — 21 El§i<j§n y;y; the substitution z = \/ay leads
to

r(esm) = \/(1—oz—l—om,)(l—oz)"_1 y

/ / —922 1 1_(Z?=1zi)2 dzy...dz,

with 0 = (1 — a)/a. Let ®(n) be denote the integral on the right hand
side. In the following we give an asymptotic formula for ®(n) as n tends to
infinity. To this end we fix an s € R. Since ffooo eV dt = V7 integrating
along the line t — si, { € (—00, 00), shows

2 o0 2 :
Ve ™ = / e~ g
— 00

(2.3)

We deduce

d(n) = 1 /OO.../OO /OO e~ 0 Xiny A P20 00 = dtdz; ...dz
VT Jo 0 J-oo "

1 OO I > 052423t K
= — e e VT sds) dt.
vy

Next we observe that the function g(t) = e ( I 05> +2its g5\ regarded
as complex function in the variable ¢t = v —|— 1 is an entire function. Since

o0 n ,
o+l < ([Tetas) —@vm e
0

(2.4)

for x > 0, the function g(v + ix) tends to zero as v tends to infinity for any
fixed x > 0. Thus we may replace the integration f t)dt along the real
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line with respect to ¢ by integration along the line v + xi, v € (—o0, ),
X = /n/2, and get

1 OO —v2 X2 —2ywi > —852—2ys+2vsi "
d(n) = N eV T ; e X ds
—0o0

en/2 0o 5 )/ oo 05?2y 54 2wsi n
- —v —iv/x —0s%—2xs+2vsi
NECORE /_ooe (2xe /0 e ds) dv.

Let ¥(n,v) be denote the expression taken to the n** power (in the paren-
theses) on the right hand side. Integration by parts yields that

o0
|T(n,v)] < 2x/ e =5 g
0

1 o0 _02 1 -9
= 2 |—— 2 ) [ —e s 1.
X[2X /0 (956 )(2X6 )ds} <

(2.5)

Since e < e for v > 1, we have
oo
1
(2.6) / [T (n, )" dv < L.
Inn n

Therefore let us assume that |¢| < Inn. By the corresponding formula in
[Rogb64] we deduce that, if the real part of w € C is positive then

/OOG—HSQ—wst:l_ﬁ_i_O 9—2 .
0 w o w? |wl?

Applying this with w = 2y — 2vi to ¥(n,t) yields that

vy 2 V33 vt
o |1— = - Z
X[ X n+6x3+0<n2)]x
1 20 62
[2x i x—2i) 0 (W)]

_ 0 2 2 5\ V2vi (14+0%)(1 + v*)
= 1—-——-——— (20+§V)n\/ﬁ+0( '[’1,2 )

Observe that ®(n) is a real number, so no term of order 1/(n+/n) shows up
in its expansion. We conclude by (2.5) and (2.6) that

n/2

U(n,v)

e

NEeIE

([ (o[22 o)

e(n/2)-0 1+ 02
= ——— |1 .
V2(2n)n/2 ( o ( n ))

Finally, the assertion follows by (2.3). O

d(n) =

By (2.1) and Lemma 2.1 we conclude
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Corollary 2.1.

dk2d3k3

ATH, T = \/(];;rkl\)/—d Rkt <1+O(k2;1))'

3. RANDOM PROJECTIONS OF REGULAR CROSS POLYTOPES

In order to proof Theorem 1.1, we need the following statement about the
the asymptotic behavior of the external angles v(F*,C") of a k-face of a
regular n-crosspolytope C™.

Lemma 3.1. If n tends to infinily then
1 (k4 1)! (wIn(n))*/?

Proof. The proof follows a proof of Vershik&Sporyshev [VSSﬁ] (see also
[Ray70]) and is based on the following formula for v(F*,C") (cf. [BH92))

/ oo o f 2 [T _ . !
(3.1)  y(Fk,Cc™) = ’“:1/0 e~ (kH1)e (ﬁ/g eV dy) dz.

Let ®(z) = (2/v/7) [y e’ dy. By the substitution z = ®~'(1 — u) we get

V(Fk7 Cn) ~

V(FF, ™) = \/W/ @711 (1 _ yynkLgy,
Let
£ (k,n) = \/ﬁ 1/2 k(&1 (1 u))2(1 — )Ry,
&k m) = \/ﬁ/ @ (1=0)? (1 _ yn—h=1gy,
Obviously, we have
(3.2) o<em s YLD

and in the following we investigate the function &;(k,n). It is well known
that ®(z) = 1 — [e=2" /(z/T)](1 + O(z™2)) as = — oo (cf. [VS86]) and thus

—z2

e
N
Taking the logarithm yields

(3.3) 22 = —In(u) — In(z) — In(y/7) + In(1 + O(z™2)),

u (1+0(z™%), u—0.
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and so x = \/—In(u)(1 + O(z~1)). Replacing this expression in (3.3) gives
22 = —In(u) — %ln(—ln(u)) _ %111(1 +0@™Y) = In(y/m) +In(1 + O(z~2)).

Hence we may write

vk

1 1/2
& (k) = LRV [ )21 - ) (14 0 o
0
Observe, that z > ®~1(1/2). Applying the substitution 1 —u = e yields
vk +1
&ilkn) = Yo—V' x

—ln(%)
/ (1—e )| —In(1 — e ) [*2e~ =B (1 4 O(z™"))dw.
0

Noting that (1 —e?)* = v¥(1+O(v)) and |In(1 —e~?)|*¥/2 = | In(v)|*/2(1 +

O(v)) as v — 0 we get

vEk+1
2

The asymptotic behavior of such an integral was explicitly determined by
Watson (cf. [VS86]) and applying that result gives

vk+1
2

51(]5, 'I’L) =

Vit /01/2 o ()2~ (1 4 O(z™)) (1 + O(v))dv.

VAt (n— k) E D (In(n — £)F2EI(1 4+ O(In(n) 1))
1 (k + 1)! ( In(n))*/2
T2 Vkr1 nFl

Together with (3.2) this shows y(F*,C") ~ & (k,n) as n tends to infinity.
a

Sl(ka ’I’L) ~

Now we are ready for the proof of Theorem 1.1.

Proof of Theorem 1.1 Let F € F,(C") and G € F(C™) with F C G.
Since every [-face, [ < n, of a regular n-crosspolytope is a regular simplex

we get B(F,G) = B(T*,T"). Furthermore, we have f,(C") = 2F*! (kﬁl)

(cf. [HRZ97]) and the number of [-faces containing a fixed k-face is equal to
2~k (”;f_l) By (1.1) we get

k
BUMTCm) =232 (" ) %
(3.4) 520

d—2s —1-2s —1-25 ,m
(3 )aer it on

and by Lemma 3.1 we obtain for n — oo

n L 7Tln(n))(d—Qs—l)/Q
9 Td 1-2s (AN ( )
(d—zs)'y( ") d_2s
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The number of nonzero summands in the sum does not depend on n and
since the sum is dominated by the term s = 0, we obtain Theorem 1.1. [

4. REMARKS

As an easy application of (1.2) we determine the probability that the
orthogonal projection of C™ onto a randomly chosen (n — 1)-dimensional
plane has 2n vertices. Let this probability be denoted P, and let v be a
vertex of C™. By a result of McMullen [McM75] we have the angle-sum
relation

ST B, Py(FC = 1.
F is a face of ¢~
Since (v, C™) = 1/(2n) this is equivalent to

om—1 "=

(4.1) Blv,C") = = —sz(ngl)ﬁ(v,Tj)v(Tj,C")

and by (1.2) we obtain E(fo(Il,_1C™)) = 2n(1 — 28(v,C™)). Thus

(1 — P3n)(2n — 2) + 20Psy, = E(fo(IT,_1C™)) = 2n(1 — 26(v, C™))
= Py =1 —2n8(v,C").

In particular for n = 3 we have B(v, T') = 1/2, B(v,T?) = arccos(1/2)/(2)

and (T, C3) = arccos(1/3)/(2n), v(T?,C3) = 1/2. Hence by (4.1) we get
B(v, C3) = 1/2 — arccos(1/3) /7 and therefore (cf. (4.2))

Py =1—68(v,C?) ~ 0.35095.

(4.2)

The next tables contain some numerical values of E(f(II;C")) using
(3.4), (3.1), (2.4) and (2.3). The calculations were carried out by the pro-
gram Maple V Release 4'.

n|d=2;k=0(|d=3; k=0|k=1|k=2
10 6.66 12.15 | 30.46 | 20.31
20 7.68 16.21 | 42.62 | 28.41
30 8.23 18.68 | 50.05 | 33.37
40 8.61 20.47 | 55.42 | 39.95
50 8.89 21.88 | 59.64 | 39.76
60 9.12 23.04 | 63.12 | 42.08
70 9.31 24.02 | 66.08 | 44.05
80 9.47 24.88 | 68.65 | 45.76
90 9.61 25.64 | 70.93 | 47.28
100 9.73 26.326 | 72.97 | 48.65
Table 1.

1©1981-1996 by Waterloo Maple Inc.
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n |3 4 5 6 7 8 9 10

d=n-1 ‘ 4.70 10.67 23.61 51.40 110.54 233.57 498.46 1048.74
k=n-—2

Table 2.
We would like to thank R. Vitale for helpful comments.
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